Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 3 - Second Order Linear Equations - 3.1 Homogenous Equations with Constant Coefficients - Problems - Page 144: 19

Answer

y=$\frac{1}{4}$$e^{t}$+$e^{-t}$

Work Step by Step

Roots of a characteristic equation: $r^{2}$-1=0 $r^{2}$=1 r=±1 General solution: y=$c_{1}$$e^{t}$+$c_{2}$$e^{-t}$ Initial conditions: y(0)=$\frac{5}{4}$ $c_{1}$+$c_{2}$=$\frac{5}{4}$ $y^{1}$=$c_{1}$$e^{t}$-$c_{2}$$e^{-t}$ $y^{1}$(0)=-$\frac{3}{4}$ $c_{1}$-$c_{2}$=-$\frac{3}{4}$ $c_{1}$+$c_{2}$+$c_{1}$-$c_{2}$=$\frac{5}{4}$-$\frac{3}{4}$ $c_{1}$=$\frac{1}{4}$ $c_{2}$=1
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.