University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.2 - Infinite Series - Exercises - Page 498: 48

Answer

$-\dfrac{\pi}{4}$

Work Step by Step

Here, we have: $ s_n=(\tan ^{-1} (1) - \tan ^{-1} (2))+(\tan ^{-1} (2) - \tan ^{-1} (3))+.......+(\tan ^{-1} (n) - \tan ^{-1} (n+1))=(\tan ^{-1} (1) - \tan ^{-1} (n+1))$ Thus, we have the sum: $\lim\limits_{n \to \infty} s_n=\lim\limits_{n \to \infty} [(\tan ^{-1} (1) - \tan ^{-1} (n+1))]=\tan^{-1} (1)-\dfrac{\pi}{2}=\dfrac{\pi}{4}-\dfrac{\pi}{2}=-\dfrac{\pi}{4}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.