University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Exercises - Page 549: 36

Answer

$1$

Work Step by Step

Taylor series for $\sin x $ can be defined as: $\sin x= x-\dfrac{ x^3}{3!}+\dfrac{x^5}{5!}-....$ Now, $\lim\limits_{x \to \infty}(x+1) \sin (\dfrac{1}{x+1})=\lim\limits_{x \to \infty}(x+1) (-\dfrac{1}{3!(x+1)^3}+...)$ or, $=\lim\limits_{x \to \infty}(1-\dfrac{1}{3!(x+1)^2}+\dfrac{1}{5!(x+1)^4}-...)$ or, $=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.