University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Section 9.10 - The Binomial Series and Applications of Taylor Series - Exercises - Page 549: 34

Answer

$-\dfrac{1}{6}$

Work Step by Step

Taylor series for $\tan^{-1} y $ can be defined as: $\tan^{-1} y= y-\dfrac{y^3}{3}+\dfrac{y^5}{5}-....$ Now, $\lim\limits_{y \to 0}\dfrac{\tan^{-1} y -\sin y}{y^3 \cos y}=\lim\limits_{y \to 0} \dfrac{(y-\dfrac{y^3}{3!}+\dfrac{y^5}{5!}-....)-(y-\dfrac{y^3}{3}+\dfrac{y^5}{5}-....)}{y^3}$ or, $=\lim\limits_{y \to 0} \dfrac{\dfrac{-y^3}{6}+ \dfrac{23y^5}{5!}+...}{y^3 \cos y}$ or, $=\lim\limits_{y \to 0} \dfrac{(-\dfrac{1}{6}+\dfrac{23y^2}{5!}-...)}{\cos y}$ or, $=-\dfrac{1}{6}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.