Answer
Converges Absolutely
Work Step by Step
Consider $a_n=\dfrac{2^n 3^n}{n^n}$
By the Root Test:
$l=\lim\limits_{n \to \infty} \sqrt[n]{|a_n|}=\lim\limits_{n \to \infty} |a_n|^{1/n}$
Now, $l=\lim\limits_{n \to \infty} \sqrt[n]{|\dfrac{2^n 3^n}{n^n}|}=\lim\limits_{n \to \infty} |\dfrac{2^n 3^n}{n^n}|^{1/n}$
or, $ \lim\limits_{n \to \infty} \dfrac{6}{n}=\lim\limits_{n \to \infty} \dfrac{6}{\infty}=0$
so, $l=0 \lt 1$
Thus, the series Converges Absolutely by the Root Test.