University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Practice Exercises - Page 552: 30

Answer

Absolutely convergent.

Work Step by Step

The Integral Test states that the series converges when the integral $\int_{k}^\infty f(x) dx$ converges. Consider the series $a_n=\int_{2}^\infty \dfrac{1}{x(\ln x)^2} dx$ Suppose $p=\ln x$ and $dp=\frac{dx}{x}$ Thus, $a_n=\int_{\ln 2}^\infty \dfrac{dp}{p^2} dx$ $a_n=-\dfrac{1}{p}|_{\ln 2}^\infty$ $a_n=-\dfrac{1}{\infty}+\dfrac{1}{\ln 2}$ $a_n=\dfrac{1}{\ln 2}$ Therefore, the given series is Absolutely convergent.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.