University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 9 - Practice Exercises - Page 552: 2

Answer

Sequence converges to $0$.

Work Step by Step

As we know that a sequence converges when $\lim\limits_{n \to \infty}a_n$ exists. Consider $a_n=\dfrac{1-(-1)^n}{\sqrt n}$ Apply limits to both sides. $\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}[\dfrac{1-(-1)^n}{\sqrt n}]$ Using Sandwich Theorem: $\lim\limits_{n \to \infty}a_n=\lim\limits_{n \to \infty}\dfrac{2}{\sqrt n}$ $\lim\limits_{n \to \infty}a_n=\dfrac{2}{\sqrt \infty}$ $\lim\limits_{n \to \infty}a_n=\dfrac{2}{ \infty}$ $\lim\limits_{n \to \infty}a_n=0$ Hence, the sequence converges to $0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.