University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.6 - Velocity and Acceleration in Polar Coordinates - Exercises - Page 672: 6

Answer

1. $v_0=\sqrt {\dfrac{G M}{r_0}}$ 2. $\sqrt {\dfrac{G M}{r_0}} \lt v_0 \lt \sqrt {\dfrac{2G M}{r_0}}$ 3. $v_0=\sqrt {\dfrac{2 G M}{r_0}} $ 4. $v_0 \gt \sqrt {\dfrac{2 G M}{r_0}} $

Work Step by Step

The eccentricity can be expressed as: $e=\dfrac{r_0^2v_0^2}{G M}-1$ The orbit will be a circle when $e=0$ $\implies v_0=\sqrt {\dfrac{G M}{r_0}}$ The orbit will be an ellipse when $ 0 \lt e \lt 1$ $\implies \sqrt {\dfrac{G M}{r_0}} \lt v_0 \lt \sqrt {\dfrac{2G M}{r_0}}$ The orbit will be a parabola when $ e=1$ $\implies v_0=\sqrt {\dfrac{2 G M}{r_0}} $ The orbit will be a hyperbola when $ e \gt 1$ $\implies v_0 \gt \sqrt {\dfrac{2 G M}{r_0}} $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.