University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 12 - Section 12.6 - Velocity and Acceleration in Polar Coordinates - Exercises - Page 672: 1

Answer

$v=3a \sin \theta \ u_r+3a (1-\cos \theta) \ u_{\theta}$ and $a=9a (2\cos \theta -1)u_r+18a \sin \theta u_{\theta}$

Work Step by Step

Write the expressions for the velocity and acceleration in terms of $u_r$ and $u_{\theta}$ . $v=\dfrac{dr}{dt}u_r+r \dfrac{d\theta}{dt}u_{\theta}$ and $a=(\dfrac{d^2r}{dt^2}-r\theta^{.2})u_r+(r\theta^{..} +2r^{.}\theta^{.})u_{\theta}$ We will apply the chain rule. $v=\dfrac{d(a(1-\cos \theta))}{dt}u_r+3ru_{\theta} \\=\dfrac{d(a(1-\cos \theta))}{dt} \dfrac{d\theta}{dt} u_r+3ru_{\theta} \\=a \sin \theta \times (3 u_r)+3ru_{\theta} \\=3a \sin \theta \times u_r+(3r) \times u_{\theta}$ Set $1-\cos \theta =r$ Thus, $v=3a \sin \theta \ u_r+3a (1-\cos \theta) \ u_{\theta}$ Next, $a=(\dfrac{d^2r}{dt^2}-r\theta^{.2})u_r+(r\theta^{..} +2r^{.}\theta^{.})u_{\theta} \\=9a (2\cos \theta -1)u_r+18a \sin \theta u_{\theta}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.