University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 11 - Section 11.3 - The Dot Product - Exercises - Page 618: 50

Answer

$\approx 67.62^{\circ}$ or $1.18$ rad

Work Step by Step

The result of exercise 31 tells us that ${\bf v}=\langle a,\ b \rangle$ is perpendicular to lines $ax+by=c$ ${\bf n_{1}} =\langle 12,5\rangle$ is perpendicular to $12x+5y=1$ ${\bf n_{2}}= \langle 2,-2\rangle$ is perpendicular to $2x-2y=3.$ $\displaystyle \theta=\cos^{-1}(\frac{{\bf n_{1}}\cdot{\bf n_{2}}}{|{\bf n_{1}}||{\bf n_{2}}|})$ $=\displaystyle \cos^{-1}(\frac{24-10}{\sqrt{144+25}\cdot\sqrt{4+4}})$ $=\displaystyle \cos^{-1}(\frac{14}{13\cdot 2\sqrt{2}})\approx 67.62^{\circ}$ or $1.18$ rad
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.