University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.6 - Conics in Polar Coordinates - Exercises - Page 591: 41

Answer

See image:

Work Step by Step

We have a sine in the denominator, so the main axis is vertical. We want $1\pm...$ in the denominator, $\displaystyle \frac{400\div 16}{(16+8\sin\theta)\div 16}$=$\displaystyle \frac{25}{1+(\frac{1}{2})\sin\theta}$ $r=\displaystyle \frac{50(\frac{1}{2})}{1+(\frac{1}{2})\sin\theta},\qquad $ Compare with $r=\displaystyle \frac{ke}{1\pm e\sin\theta}$ $e=\displaystyle \frac{1}{2}, \qquad $ This is an ellipse with a vertical major axis. $k=50,\quad y=50$ is a directrix $a(1-e^{2})=ke$ $a\displaystyle \cdot\frac{3}{4}=25$ $a=\displaystyle \frac{100}{3}$ $c=ae=\displaystyle \frac{50}{3}$ The center is at $\displaystyle \frac{50}{3}$ units below the focus at the origin, with polar coordinates $(\displaystyle \frac{50}{3},\frac{3\pi}{2}).$ The vertices are at $\displaystyle \frac{100}{3}$ units above and below the center, $(\displaystyle \frac{50}{3}+\frac{100}{3},\frac{3\pi}{2})=(50,\frac{3\pi}{2})$ $(\displaystyle \frac{50}{3}-\frac{100}{3},\frac{3\pi}{2})=(-\frac{50}{3},\frac{3\pi}{2})=(\frac{50}{3},\frac{\pi}{2})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.