University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.6 - Conics in Polar Coordinates - Exercises - Page 591: 22

Answer

$ \displaystyle \frac{y^{2}}{3}-x^{2}=1$ Foci: $\qquad (0, \pm 2)$ Directrices: $\quad y=\displaystyle \pm\frac{3}{2}$

Work Step by Step

Eccentricity $=\displaystyle \frac{\text{distance between foci}}{\text{distance between vertices}}$ Write in standard form and read a,b. $y^{2}-3x^{2}=3\qquad /\div 3$ $ \displaystyle \frac{y^{2}}{3}-x^{2}=1 \qquad $ We have a vertical axis, $a=\sqrt{3}, b=1$ Center-to-focus distance: $\quad c=\sqrt{a^{2}+b^{2}}=\sqrt{3+1}=2$ Foci: $\quad (0, \pm c)=\qquad (0, \pm 2)$ Vertices: $\quad (0, \pm a)=\qquad (0, \pm\sqrt{3})$ Asymptotes: $\quad y=\displaystyle \pm\frac{a}{b}x\Rightarrow\qquad y=\pm\sqrt{3}x$ Eccentricity: $\displaystyle \quad e=\frac{c}{a}=\frac{2}{\sqrt{3}}$ Directrices: $\quad y=0\displaystyle \pm\frac{a}{e}=\pm\frac{\sqrt{3}}{\frac{2}{\sqrt{3}}}=\pm\frac{3}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.