Answer
$x=\cot^2 \theta$;$y= \cot \theta$; $0\leq \theta \leq \dfrac{\pi}{2}$
Work Step by Step
Here, $y=\sqrt x$
We know that $y=x \tan \theta$
Then, we have $\sqrt x= \cot \theta$
This implies that $x=\cot^2 \theta$
Now, $y=(\cot^2 \theta) (\tan \theta) \implies y= \cot \theta$
Hence, $x=\cot^2 \theta$;$y= \cot \theta$; $0\leq \theta \leq \dfrac{\pi}{2}$