University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.1 - Parametrizations of Plane Curves - Exercises - Page 563: 31

Answer

$x=\dfrac{4}{2 \tan \theta+1}; y= \dfrac{4 \tan \theta}{2 \tan \theta+1}$; $0\leq \theta \leq \dfrac{\pi}{2}$

Work Step by Step

The equation of the line joining $(0,2)$ and $(4,0)$ is given as: $\dfrac{y-0}{x-4}=\dfrac{2-0}{0-4}$ This implies that $y=-\dfrac{x}{2}+2$ We know that $y=x \tan \theta$ Then, we have $x \tan \theta=-\dfrac{x}{2}+2$ This implies that $x=\dfrac{4}{2 \tan \theta+1}$ Now, $y=-(\dfrac{1}{2})(\dfrac{4}{2 \tan \theta+1})+2$ or, $y= \dfrac{4 \tan \theta}{2 \tan \theta+1}$ Hence, $x=\dfrac{4}{2 \tan \theta+1}; y= \dfrac{4 \tan \theta}{2 \tan \theta+1}$; $0\leq \theta \leq \dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.