University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 10 - Section 10.1 - Parametrizations of Plane Curves - Exercises - Page 563: 29

Answer

$x=-\dfrac{at}{\sqrt{1+t^2}}$; $y=\dfrac{a}{\sqrt{1+t^2}}$ ; $-\infty \lt t \lt \infty$

Work Step by Step

The equation of the circle is $x^2+y^2=a^2$ Here, $x^2+y^2=a^2 \implies y=\sqrt {a^2-x^2}$ and slope: $t=\dfrac{dy}{dx}=-\dfrac{x}{\sqrt {a^2-x^2}}$ or, $x^2=\dfrac{(at)^2}{1+t^2}$ $x=\dfrac{at}{\sqrt{1+t^2}}$ or $x=-\dfrac{at}{\sqrt{1+t^2}}$ Now, $y=\sqrt {a^2-x^2} \implies \sqrt {a^2-\dfrac{(at)^2}{1+t^2}}=\dfrac{a}{\sqrt{1+t^2}}$ Hence, $x=-\dfrac{at}{\sqrt{1+t^2}}$; $y=\dfrac{a}{\sqrt{1+t^2}}$ ; $-\infty \lt t \lt \infty$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.