Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 457: 67

Answer

$$\frac{{{x^{m + 1}}}}{{m + 1}}{\left( {\ln x} \right)^n} - \frac{n}{{m + 1}}\int {{x^m}{{\left( {\ln x} \right)}^{n - 1}}dx} ,\,\,\,\,\,\,\,\,m \ne - 1$$

Work Step by Step

$$\eqalign{ & \int {{x^m}{{\left( {\ln x} \right)}^n}} dx = \frac{{{x^{m + 1}}}}{{m + 1}}{\left( {\ln x} \right)^n} - \frac{n}{{m + 1}} \cr & {\text{Using the integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}\,\,\,\,\,u = {\left( {\ln x} \right)^n},\,\,\,\,\,\,\,du = n{\left( {\ln x} \right)^{n - 1}}\left( {\frac{1}{x}} \right)dx \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,dv = {x^m}dx,\,\,\,\,\,\,\,v = \frac{{{x^{m + 1}}}}{{m + 1}} \cr & \cr & {\text{Integration by parts formula }}\int {udv} = uv - \int {vdu.{\text{ T}}} {\text{hen}}{\text{,}} \cr & \int {udv} = uv - \int {vdu} \,\,\,\, \cr & \to \int {{x^m}{{\left( {\ln x} \right)}^n}} dx = {\left( {\ln x} \right)^n}\left( {\frac{{{x^{m + 1}}}}{{m + 1}}} \right) - \int {\left( {\frac{{{x^{m + 1}}}}{{m + 1}}} \right)\left( {n{{\left( {\ln x} \right)}^{n - 1}}\left( {\frac{1}{x}} \right)dx} \right)} \cr & \cr & {\text{simplifying}} \cr & \int {{x^m}{{\left( {\ln x} \right)}^n}} dx = \frac{{{x^{m + 1}}}}{{m + 1}}{\left( {\ln x} \right)^n} - \int {\left( {\frac{{n{x^{m + 1 - 1}}}}{{m + 1}}} \right){{\left( {\ln x} \right)}^{n - 1}}dx} \cr & \int {{x^m}{{\left( {\ln x} \right)}^n}} dx = \frac{{{x^{m + 1}}}}{{m + 1}}{\left( {\ln x} \right)^n} - \frac{n}{{m + 1}}\int {{x^m}{{\left( {\ln x} \right)}^{n - 1}}dx} ,\,\,\,\,\,\,\,\,m \ne - 1 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.