Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 457: 66

Answer

$$x{\left( {\ln x} \right)^n} - n\int {{{\left( {\ln x} \right)}^{n - 1}}} dx$$

Work Step by Step

$$\eqalign{ & \int {{{\left( {\ln x} \right)}^n}} dx \cr & {\text{Using the integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}\,\,\,\,\,u = {\left( {\ln x} \right)^n},\,\,\,\,\,\,\,du = n{\left( {\ln x} \right)^{n - 1}}\left( {\frac{1}{x}} \right)dx \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,dv = dx,\,\,\,\,\,\,\,v = x \cr & \cr & {\text{Integration by parts formula }}\int {udv} = uv - \int {vdu.{\text{ T}}} {\text{hen}}{\text{,}} \cr & \int {udv} = uv - \int {vdu} \,\,\,\, \cr & \to \int {{{\left( {\ln x} \right)}^n}} dx = \left( x \right){\left( {\ln x} \right)^n} - \int {\left( x \right)\left( {n{{\left( {\ln x} \right)}^{n - 1}}\left( {\frac{1}{x}} \right)dx} \right)} \cr & \cr & {\text{simplifying}} \cr & \int {{{\left( {\ln x} \right)}^n}} dx = x{\left( {\ln x} \right)^n} - \int {n{{\left( {\ln x} \right)}^{n - 1}}} dx \cr & \int {{{\left( {\ln x} \right)}^n}} dx = x{\left( {\ln x} \right)^n} - n\int {{{\left( {\ln x} \right)}^{n - 1}}} dx \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.