Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.2 - Integration by Parts - Exercises 8.2 - Page 457: 65

Answer

$$\frac{{{x^n}{e^{ax}}}}{a} - \frac{n}{a}\int {{e^{ax}}{x^{n - 1}}dx} ,\,\,\,\,\,\,\,a \ne 0$$

Work Step by Step

$$\eqalign{ & \int {{x^n}{e^{ax}}} dx \cr & {\text{Using the integration by parts method }} \cr & \,\,\,\,\,{\text{Let }}\,\,\,\,\,u = {x^n},\,\,\,\,\,\,\,du = n{x^{n - 1}}dx \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,dv = {e^{ax}}dx,\,\,\,\,\,\,\,v = \frac{1}{a}{e^{ax}} \cr & \cr & {\text{Integration by parts formula }}\int {udv} = uv - \int {vdu.{\text{ T}}} {\text{hen}}{\text{,}} \cr & \int {udv} = uv - \int {vdu} \,\,\,\, \cr & \to \int {{x^n}{e^{ax}}} dx = \left( {{x^n}} \right)\left( {\frac{1}{a}{e^{ax}}} \right) - \int {\left( {\frac{1}{a}{e^{ax}}} \right)\left( {n{x^{n - 1}}dx} \right)} \cr & \cr & {\text{simplifying}} \cr & \int {{x^n}{e^{ax}}} dx = \frac{{{x^n}{e^{ax}}}}{a} - \int {\frac{n}{a}{e^{ax}}{x^{n - 1}}dx} \cr & \int {{x^n}{e^{ax}}} dx = \frac{{{x^n}{e^{ax}}}}{a} - \frac{n}{a}\int {{e^{ax}}{x^{n - 1}}dx} ,\,\,\,\,\,\,\,a \ne 0 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.