Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.8 - Relative Rates of Growth - Exercises 7.8 - Page 437: 3

Answer

$a)$ $same$ $b)$ $faster$ $c)$ $same$ $d)$ $same$ $e)$ $slower$ $f)$ $faster$ $g)$ $slower$ $h)$ $same$

Work Step by Step

$a)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{x^{2}+4x}{x^{2}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{2x+4}{2x}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{2}{2}$ = $1$, $same$ $b)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{x^{5}-x^{2}}{x^{2}}$= $\mathop {\lim }\limits_{n \to \infty }$$\frac{5x^{4}-2x}{2x}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{20x^{3}-2}{2}$ = $\mathop {\lim }\limits_{n \to \infty }$${60x^{2}}$ = $\infty$, $faster$ $c)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{\sqrt {x^{4}+x^{3}}}{x^{2}}$ = $\sqrt {\mathop {\lim }\limits_{n \to \infty }\frac{{x^{4}+x^{3}}}{x^{4}}}$ = $\sqrt {\mathop {\lim }\limits_{n \to \infty }(1+\frac{1}{x})}$ =$1$, $same$ $d)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{(x+3)^{2}}{x^{2}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{2(x+3)}{2x}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{2}{2}$ = $1$, $same$ $e)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{x\ln{x}}{x^{2}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{x(\frac{1}{x})+\ln{x}}{2x}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1+\ln{x}}{2x}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{\frac{1}{x}}{2}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{2x}$ = $0$, $slower$ $f)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{2^{x}}{x^{2}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{\ln{2}(2^{x})}{2x}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{(\ln{2})^{2}(2^{x})}{2}$ = $\infty$, $faster$ $g)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{x^{3}e^{-x}}{x^{2}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{x}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e^{x}}$ = $0$, $slower$ $h)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{8x^{2}}{x^{2}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{16x}{2x}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{16}{2}$ = $8$, $same$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.