Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.8 - Relative Rates of Growth - Exercises 7.8 - Page 437: 1

Answer

$a)$ $slower$ $b)$ $slower$ $c)$ $slower$ $d)$ $faster$ $e)$ $slower$ $f)$ $slower$ $g)$ $same$ $h)$ $slower$

Work Step by Step

$a)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{x-3}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e^{x}}$ = $0$, $slower$ $b)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{x^{3}+sin^{2}x}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{3x^{2}+2sin(x)cos(x)}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{3x^{2}+sin(2x)}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{6x+2cos(2x)}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{6-4sin(2x)}{e^{x}}$ = $0$, $slower$ $Sandwich Theorem$ $\frac{2}{e^{x}}$ $\leq$ $\frac{6-4sin(2x)}{e^{x}}$ $\leq$ $\frac{10}{e^{x}}$ $c)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{\sqrt x}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{2\sqrt{x}e^{x}}$ = $0$, $slower$ $d)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{4^{x}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$(\frac{4}{e})^{x}$ = $\infty$, $faster$ $because$ $\frac{4}{e}$ $\gt$ $1$ $e)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{(\frac{3}{2})^{x}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$(\frac{3}{2e})^{x}$ = $0$, $slower$ $because$ $\frac{3}{2e}$ $\lt$ $1$ $f)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{e^{\frac{x}{2}}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e^{\frac{x}{2}}}$ = $0$, $slower$ $g)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{\frac{e^{x}}{2}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{{e^{x}}}{2e^{x}}$ = $\frac{1}{2}$, $same$ $h)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{\log_{10}x}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{\ln{x}}{{\ln10}e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{{\ln10}xe^{x}}$= $0$, $slower$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.