Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 7: Transcendental Functions - Section 7.8 - Relative Rates of Growth - Exercises 7.8 - Page 437: 2

Answer

$a)$ $slower$ $b)$ $slower$ $c)$ $slower$ $d)$ $slower$ $e)$ $slower$ $f)$ $faster$ $g)$ $slower$ $h)$ $same$

Work Step by Step

$a)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{10x^{4}+30x+1}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{40x^{3}+30}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{120x^{2}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{240x}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{240}{e^{x}}$ = $0$, $slower$ $b)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{x\ln{x}-x}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{x(\frac{1}{x})+\ln{x}-1}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{\ln{x}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{xe^{x}}$ = $0$, $slower$ $c)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{\sqrt{1+x^{4}}}{e^{x}}$ = $\sqrt {\mathop {\lim }\limits_{n \to \infty }\frac{1+x^{4}}{e^{x}}}$ = $\sqrt {\mathop {\lim }\limits_{n \to \infty }\frac{4x^{3}}{e^{x}}}$ = $\sqrt {\mathop {\lim }\limits_{n \to \infty }\frac{12x^{2}}{e^{x}}}$ = $\sqrt {\mathop {\lim }\limits_{n \to \infty }\frac{24x}{e^{x}}}$ = $\sqrt {\mathop {\lim }\limits_{n \to \infty }\frac{24}{e^{x}}}$ = $\sqrt 0$ = $0$, $slower$ $d)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{(\frac{5}{2})^{x}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$(\frac{5}{2e})^{x}$ = $0$, $slower$ $because$ $\frac{5}{2e}$ $\lt$ $1$ $e)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{e^{-x}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e^{2x}}$ = $0$, $slower$ $f)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{xe^{x}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$x$ = $\infty$, $faster$ $g)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{e^{cos(x)}}{e^{x}}$ $-1$ $\leq$ $cos(x)$ $\leq$ $1$ $\frac{e^{-1}}{e^{x}}$ $\leq$ $\frac{e^{cos(x)}}{e^{x}}$ $\leq$ $\frac{e^{1}}{e^{x}}$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{e^{-1}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e^{x+1}}$ = $0$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{e^{1}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e^{x-1}}$ = $0$ so $\mathop {\lim }\limits_{n \to \infty }$$\frac{e^{cos(x)}}{e^{x}}$ = $0$, $slower$ $h)$ $\mathop {\lim }\limits_{n \to \infty }$$\frac{e^{x-1}}{e^{x}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e^{x-x+1}}$ = $\mathop {\lim }\limits_{n \to \infty }$$\frac{1}{e}$ = $\frac{1}{e}$, $same$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.