Answer
$4 \pi \sqrt 5$
Work Step by Step
Integrate the integral to calculate the surface area as follows:
We have: $S_{A}= (2 \pi)\int_{a}^{b} y \sqrt {1+(\dfrac{dy}{dx})^2}$
or, $ =(2 \pi)\int_{0}^{4}(\dfrac{x}{2}) \cdot \sqrt {1+\dfrac{1}{4}} dx$
or, $=[\dfrac{\sqrt 5 \pi x^2}{4} ]_0^4$
Thus, $Surface \space Area=4 \pi \sqrt 5$