Answer
$2 \pi$
Work Step by Step
Integrate the integral to calculate the surface area as follows:
We have: $S_{A}= (2 \pi)\int_{a}^{b} y \sqrt {1+(\dfrac{dy}{dx})^2}$
or, $ =(2 \pi)\int_{1/2}^{3/2} \sqrt {2x-x^2} \sqrt {\dfrac{1}{2x-x^2}} dx$
or, $=(2 \pi) \int_{1/2}^{3/2} x dx$
or, $ = 3 \pi -\pi $
Thus, $Surface \space Area=2 \pi$