Answer
$8 \pi \sqrt 5$
Work Step by Step
Integrate the integral to calculate the surface area as follows:
We have: $S_{A}= (2 \pi)\int_{a}^{b} y \sqrt {1+(\dfrac{dy}{dx})^2}$
or, $ =(2 \pi)\int_{0}^{2}(2y) \cdot \sqrt {1+(2)^2} dy$
or, $=[4 \pi \sqrt 5y]_{0}^{2}$
Thus, $Surface \space Area=8 \pi \sqrt 5$