Answer
$\dfrac{\pi r^2 h}{3}$
Work Step by Step
We need to use the Washer method as follows:
$V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dy \\= \int_{0}^{r} (2\pi) \cdot (h-\dfrac{h x}{r}) dx \\=2 \pi \times \int_{0}^{r}[h x-\dfrac{hx^2}{r}] dx \\=\dfrac{\pi r^2 h}{3}$