Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.2 - Volumes Using Cylindrical Shels - Exercises 6.2 - Page 331: 32

Answer

$a)$ $8\pi$ $b)$ $\frac{32\pi}{5}$ $c)$ $\frac{224\pi}{15}$ $d)$ $\frac{8\pi}{3}$

Work Step by Step

use shell method a) the x axis $y$ = $\sqrt x$ $y^{2}$ = $x$ $V$ = $\int_{{\,0}}^{{\,2}}$$2\pi(y)(y^{2})$$dy$ $V$ = $2\pi$$\int_{{\,0}}^{{\,2}}$$(y^{3})$$dy$ $V$ = $2\pi$$(\frac{1}{4}y^{4})$$|_{{\,0}}^{{\,2}}$ $V$ = $2\pi$$(4-0)$ = $8\pi$ b) the y axis $V$ = $\int_{{\,0}}^{{\,4}}$$2\pi(x)(2-\sqrt x)$$dx$ $V$ = $2\pi$$\int_{{\,0}}^{{\,4}}$$(2x-x^{\frac{3}{2}})$$dx$ $V$ = $2\pi$$(x^{2}-\frac{2}{5}x^{\frac{5}{2}})$$|_{{\,0}}^{{\,4}}$ $V$ = $2\pi$$[(16-\frac{64}{5})-(0-0)]$ $V$ = $\frac{32\pi}{5}$ c) the line x = 4 $V$ = $\int_{{\,0}}^{{\,4}}$$2\pi(4-x)(2-\sqrt x)$$dx$ $V$ = $2\pi$$\int_{{\,0}}^{{\,4}}$$(8-4\sqrt x-2x+x^{\frac{3}{2}})$$dx$ $V$ = $2\pi$$(8x-\frac{8}{3}x^{\frac{3}{2}}-x^{2}+\frac{2}{5}x^{\frac{5}{2}})$$|_{{\,0}}^{{\,4}}$ $V$ = $2\pi$$[(32-\frac{64}{3}-16+\frac{64}{5})-(0-0-0+0)]$ $V$ = $\frac{224\pi}{15}$ d) the line y = 1 $V$ = $\int_{{\,0}}^{{\,2}}$$2\pi(y-1)(y^{2})$$dy$ $V$ = $2\pi$$\int_{{\,0}}^{{\,2}}$$(y^{3}-y^{2})$$dy$ $V$ = $2\pi$$(\frac{1}{4}y^{4}-\frac{1}{3}y^{3})$$|_{{\,0}}^{{\,2}}$ $V$ = $2\pi$$[(4-\frac{8}{3})-(0-0)]$ $V$ = $\frac{8\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.