Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Section 6.2 - Volumes Using Cylindrical Shels - Exercises 6.2 - Page 331: 31

Answer

$a)$ $\frac{5\pi}{3}$ $b)$ $\frac{4\pi}{3}$ $c)$ $2\pi$ $d)$ $\frac{2\pi}{3}$

Work Step by Step

from (1,2) and (2,2) we get $y = 2$ from (1,1) and (1,2) we get $x = 1$ from (1.1) and (2,2) can find the equation as $m$ $(slope)$ = $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$ $m$ = $\frac{2-1}{2-1}$ = $1$ then $1$ = $\frac{y-1}{x-1}$ $x-1$ = $y-1$ $x$ = $y$ so we have $y = 2$, $x = 1$ and $x$ = $y$ use shell method a) the x axis $V$ = $\int_{{\,1}}^{{\,2}}$$2\pi(y)(y-1)$$dy$ $V$ = $2\pi$$\int_{{\,1}}^{{\,2}}$$(y^{2}-y)$$dy$ $V$ = $2\pi$$(\frac{1}{3}y^{3}-\frac{1}{2}y^{2})$$|_{{\,1}}^{{\,2}}$ $V$ = $2\pi$$[(\frac{8}{3}-2)-(\frac{1}{3}-\frac{1}{2})]$ $V$ = $\frac{5\pi}{3}$ b) the y axis $V$ = $\int_{{\,1}}^{{\,2}}$$2\pi(x)(2-x)$$dx$ $V$ = $2\pi$$\int_{{\,1}}^{{\,2}}$$(2x-x^{2})$$dx$ $V$ = $2\pi$$(x^{2}-\frac{1}{3}x^{3})$$|_{{\,1}}^{{\,2}}$ $V$ = $2\pi$$[(4-\frac{8}{3})-(1-\frac{1}{3})]$ $V$ = $\frac{4\pi}{3}$ c) the line x = $\frac{10}{3}$ $V$ = $\int_{{\,1}}^{{\,2}}$$2\pi(\frac{10}{3}-x)(2-x)$$dx$ $V$ = $2\pi$$\int_{{\,1}}^{{\,2}}$$(\frac{20}{3}-\frac{16}{3}x+x^{2})$$dx$ $V$ = $2\pi$$(\frac{20}{3}x-\frac{8}{3}x^{2}+\frac{1}{3}x^{3})$$|_{{\,1}}^{{\,2}}$ $V$ = $2\pi$$[(\frac{40}{3}-\frac{32}{3}+\frac{8}{3})-(\frac{20}{3}-\frac{8}{3}+\frac{1}{3}))]$ $V$ = $2\pi$ d) the line y = 1 $V$ = $\int_{{\,1}}^{{\,2}}$$2\pi(y-1)(y-1)$$dy$ $V$ = $2\pi$$\int_{{\,1}}^{{\,2}}$$(y^{2}-2y+1)$$dy$ $V$ = $2\pi$$(\frac{1}{3}y^{3}-y^{2}+y)$$|_{{\,1}}^{{\,2}}$ $V$ = $2\pi$$[(\frac{8}{3}-4+2)-(\frac{1}{3}-1+1)]$ $V$ = $\frac{2\pi}{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.