Answer
$4640 J$
Work Step by Step
Integrate the integral to calculate the work done area as follows:
Work done, $W=w_1+w_2= \int_{0}^{100}(100) dx+ \int_{0}^{40} (0.8) (40-x) dx$
or, $=0.8 \times [40 x-\dfrac{x^2}{2}]_0^{40}$
or, $= \dfrac{(0.8) (1600)}{2} $
or, $=640$ J
Total work done: $W=4800 + 640 =4640 J$