Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 6: Applications of Definite Integrals - Practice Exercises - Page 363: 16

Answer

$ 88 \pi $ or, $\approx 276 \space in^{3}$

Work Step by Step

We need to use the shell model as follows: $V=\int_p^{q} (2 \pi) \cdot (\space radius \space of \space shell) ( height \space of \space Shell) \space dx$ $ \implies V= \int_{-11/2}^{11/2} ( \pi) \sqrt {12(1-\dfrac{4x^2}{121})} dx$ or, $=12 \pi \times [x-\dfrac{4x^3}{363} ]_{-11/2}^{11/2}$ or, $=132 \pi [1-\dfrac{1}{3}]$ or, $= 88 \pi $ or, $\approx 276 \space in^{3}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.