Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 3: Derivatives - Practice Exercises - Page 178: 46

Answer

$$\frac{{dy}}{{dx}} = - \frac{y}{x}$$

Work Step by Step

$$\eqalign{ & {x^2}{y^2} = 1 \cr & {\text{differentiate both sides with respect to }}x \cr & \frac{d}{{dx}}\left( {{x^2}{y^2}} \right) = \frac{d}{{dx}}\left( 1 \right) \cr & {\text{use the product rule}} \cr & {x^2}\frac{d}{{dx}}\left( {{y^2}} \right) + {y^2}\frac{d}{{dx}}\left( {{x^2}} \right) = \frac{d}{{dx}}\left( 1 \right) \cr & {\text{Find derivatives}}{\text{, }} \cr & {x^2}\left( {2y\frac{{dy}}{{dx}}} \right) + {y^2}\left( {2x} \right) = 0 \cr & 2{x^2}y\frac{{dy}}{{dx}} + 2x{y^2} = 0 \cr & \cr & {\text{Solve for }}\frac{{dy}}{{dx}} \cr & 2{x^2}y\frac{{dy}}{{dx}} = - 2x{y^2} \cr & \frac{{dy}}{{dx}} = - \frac{{2x{y^2}}}{{2{x^2}y}} \cr & \frac{{dy}}{{dx}} = - \frac{y}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.