Answer
$v(\frac{\pi}{4})=\frac{\sqrt 2}{2}i-\frac{\sqrt 2}{2}j$
$v(\frac{\pi}{2})=j$
$a(\frac{\pi}{4})=-\frac{\sqrt 2}{2}i-\frac{\sqrt 2}{2}j$
$a(\frac{\pi}{2})=-i$
Work Step by Step
$v(t)=cos(t)i-sin(t)j$ $=>$ $v(\frac{\pi}{4})=\frac{\sqrt 2}{2}i-\frac{\sqrt 2}{2}j$
$v(t)=cos(t)i-sin(t)j$ $=>$ $v(\frac{\pi}{2})=j$
$a(t)=-sin(t)i-cos(t)j$ $=>$ $a(\frac{\pi}{4})=-\frac{\sqrt 2}{2}i-\frac{\sqrt 2}{2}j$
$a(t)=-sin(t)i-cos(t)j$ $=>$ $a(\frac{\pi}{2})=-i$