Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 13: Vector-Valued Functions and Motion in Space - Section 13.1 - Curves in Space and Their Tangents - Exercises 13.1 - Page 746: 28

Answer

a) $\dfrac{d}{dt}(u \cdot ( v \times w)=u'\cdot (v \times w)+u \cdot (v \times w')+u \cdot (v' \times w)$ b) $\dfrac{d}{dt}(r \cdot ( r' \times r'')=r \cdot (r' \times r''')$

Work Step by Step

a. Need to use product rule such as: $\dfrac{d}{dt}(u \cdot ( v \times w)=u'\cdot (v \times w)+u \cdot (v \times w'+v' \times w)$ or, $=u'\cdot (v \times w)+u \cdot (v \times w')+u \cdot (v' \times w)$ Therefore, $\dfrac{d}{dt}(u \cdot ( v \times w)=u'\cdot (v \times w)+u \cdot (v \times w')+u \cdot (v' \times w)$ b. Need to use product rule such as: $\dfrac{d}{dt}(r \cdot ( r' \times r'')=r \cdot (r'' \times r''+ r' \times r''')+(0)$ Therefore, $\dfrac{d}{dt}(r \cdot ( r' \times r'')=r \cdot (r' \times r''')$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.