Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 13: Vector-Valued Functions and Motion in Space - Section 13.1 - Curves in Space and Their Tangents - Exercises 13.1 - Page 746: 12

Answer

$v(t)=(\sec t\tan t)i+(\sec^2 t)j+\frac{4}{3}k $ $a(t)=(\sec t \tan ^{2}t+\sec^{3}t)i+(2\sec^{2}t \tan t)j$ Speed: $\vert v(\frac{\pi}{6})\vert=2 $ Direction:$=\frac{1}{3}i+\frac{2}{3}j+\frac{2}{3}k$ Velocity: $2(\frac{1}{3}i+\frac{2}{3}j+\frac{2}{3}k)$

Work Step by Step

Calculate $v(t)$ and $a(t)$: $v(t)=(\sec t\tan t)i+(\sec^2 t)j+\frac{4}{3}k $ $a(t)=(\sec t \tan ^{2}t+\sec^{3}t)i+(2\sec^{2}t \tan t)j$ Speed: $\left| v\left(\frac{\pi}{6}\right)\right|=\sqrt {\left(\sec \frac{\pi}{6}\tan \frac{\pi}{6}\right)^{2}+\left(\sec^{2}\frac{\pi}{6}\right)^{2}+\left(\frac{4}{3}\right)^{2}}=2 $ Direction: $\frac{v(\frac{\pi}{6})}{\vert v(\frac{\pi}{6})\vert}=\frac{(\sec \frac{\pi}{6}\tan \frac{\pi}{6})i +(\sec^{2}\frac{\pi}{6})j+\frac{4}{3}k }{2}=\frac{1}{3}i+\frac{2}{3}j+\frac{2}{3}k$ The velocity is: $v(\frac{\pi}{6})=2(\frac{1}{3}i+\frac{2}{3}j+\frac{2}{3}k)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.