Answer
$v(1,0)=-j$ (Clockwise Motion)
Work Step by Step
$v=\dfrac{dx}{dt}i+\dfrac{dy}{dt}j$
The equation of the circle is $x^2+y^2=1$
$2 x x_t+2y y_t=0$
$\implies \dfrac{dy}{dt}=\dfrac{-x}{y} \dfrac{dx}{dt}$
Since, $\dfrac{dx}{dt}=y$
$\dfrac{dy}{dt}=\dfrac{-x}{y} \times y$
So, $\dfrac{dy}{dt}=-x$
Now, $v(1,0)=\dfrac{dx}{dt}i+\dfrac{dy}{dt}j=0 i -(1) j $
So, $v(1,0)=-j$ (Clockwise Motion)