Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 12: Vectors and the Geometry of Space - Section 12.1 - Three-Dimensional Coordinate Systems - Exercises 12.1 - Page 696: 34

Answer

$x^{2}+y^{2}=3,\quad z=0$

Work Step by Step

(distance from $(0,0,1)$ to (x,y,z))=2 $\sqrt{x^{2}+y^{2}+(z-1)^{2}}=2$ (distance from $(0,0,-1)$ to (x,y,z))=2 $\sqrt{x^{2}+y^{2}+(z+1)^{2}}=2$ 2=2, so we equate the LHS's $\sqrt{x^{2}+y^{2}+(z-1)^{2}}=\sqrt{x^{2}+y^{2}+(z+1)^{2}}\quad$ square both sides $ x^{2}+y^{2}+(z-1)^{2}=x^{2}+y^{2}+(z+1)^{2}\quad$ ... simplify $(z-1)^{2}=(z+1)^{2}$ $z^{2}-2z+1=z^{2}+2z+1$ $-4z=0$ $z=0$ (this set of points is in the xy-plane) Substitute $z=0$ in $x^{2}+y^{2}+(z-1)^{2}=4,$ $x^{2}+y^{2}+1=4,\quad z=0$ $x^{2}+y^{2}=3,\quad z=0$ (circle of radius $\sqrt{3}$ in the xy-plane, centered at the origin).
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.