Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 49

Answer

(a) (i) $\lim\limits_{x \to 2^+}g(x) = 5$ (ii) $\lim\limits_{x \to 2^-}g(x) = -5$ (b) $\lim\limits_{x \to 2}g(x)$ does not exist. (c) We can see a sketch of the graph of $g(x)$ below.

Work Step by Step

(a) $g(x) = \frac{x^2+x-6}{\vert x-2\vert}$ (i) Note that $x \gt 2$ We can find $\lim\limits_{x \to 2^+}g(x)$: $\lim\limits_{x \to 2^+}g(x)$ $=\lim\limits_{x \to 2^+}\frac{x^2+x-6}{\vert x-2\vert}$ $=\lim\limits_{x \to 2^+}\frac{(x+3)(x-2)}{x-2}$ $=\lim\limits_{x \to 2^+}(x+3)$ $= 5$ (ii) Note that $x \lt 2$ We can find $\lim\limits_{x \to 2^-}g(x)$: $\lim\limits_{x \to 2^-}g(x)$ $=\lim\limits_{x \to 2^-}\frac{x^2+x-6}{\vert x-2\vert}$ $=\lim\limits_{x \to 2^-}\frac{(x+3)(x-2)}{-(x-2)}$ $=\lim\limits_{x \to 2^-}-(x+3)$ $= -5$ (b) Since $\lim\limits_{x \to 2^+}g(x)\neq \lim\limits_{x \to 2^-}g(x)$, then $\lim\limits_{x \to 2}g(x)$ does not exist. (c) We can see a sketch of the graph of $g(x)$ below.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.