Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 2 - Section 2.3 - Calculating Limits Using the Limit Laws - 2.3 Exercises - Page 103: 48

Answer

a. (i) 1 (ii) -1 (iii) DNE (iv) -1 (v) 1 (vi) DNE b. $lim_{x\to a}sgn\left(sinx\right)=DNE$ if $a=n\pi$ c. See graph

Work Step by Step

a. $0^{+}$: means from right to 0 (small positive number) $0^{-}$: means from left to 0 (negative positive number) (i) $\lim _{x\to 0^+}sgn\left(sinx\right)=sgn\left(\lim \:_{x\to \:0^+}sinx\right)=sgn\left(0^+\right)=1$ (ii) $\lim _{x\to 0^-}sgn\left(sinx\right)=sgn\left(\lim \:_{x\to \:0^-}sinx\right)=sgn\left(0^-\right)=-1$ (iii) we have to look at (i) and (ii) $\lim _{x\to 0^+}sgn\left(sinx\right)\ne\lim _{x\to 0^-}sgn\left(sinx\right)$ $\lim _{x\to 0}sgn\left(sinx\right)=DNE$ (iv) $\lim _{x\to \:\pi \:^+\:}sgn\left(sinx\right)=sgn\left(\lim \:_{x\to\pi \:^+\:}sinx\right)=sgn\left(0^-\right)=-1$ (v) $\lim _{x\to \:\pi \:^-}sgn\left(sinx\right)=sgn\left(\lim \:_{x\to \pi \:^-}sinx\right)=sgn\left(0^+\right)=1$ (vi) we have to look (iv) and (v) $lim_{x\to \:\pi ^+\:}sgn\left(sinx\right)\ne lim_{x\to\pi \:^-}\:sgn\left(sinx\right)$ $lim_{x\to \:\pi}sgn\left(sinx\right)=DNE$ b. $\lim _{x\to a}sgn\left(sin(x)\right)$ does not exist when $a=0$ then $\lim _{x\to a}sgn\left(sin(x)\right)$ not exist when $sina=0$ $sin a=0$ when $a=n\pi$ $lim_{x\to a}sgn\left(sinx\right)=DNE$ if $a=n\pi$ c.See graph
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.