Answer
$\lim\limits_{x \to 0}(ln~x^2-x^{-2}) = -\infty$
Work Step by Step
$\lim\limits_{x \to 0}(ln~x^2-x^{-2})$
When $x$ is close to 0, $x^2$ is a very small positive number.
Then $ln~x^2$ approaches $-\infty$
The value of $x^{-2} = \frac{1}{x^2}$ approaches $\infty$
Then, the value of $(ln~x^2-x^{-2})$ approaches $-\infty$