Answer
$\lim\limits_{x \to 1}\frac{2-x}{(x-1)^2}=\infty$
Work Step by Step
$\lim\limits_{x \to 1^+}\frac{2-x}{(x-1)^2}=\frac{1^-}{(0^+)^2}=\frac{1^-}{0^+}=\infty$
$\lim\limits_{x \to 1^-}\frac{2-x}{(x-1)^2}=\frac{1^+}{(0^-)^2}=\frac{1^-}{0^+}=\infty$
Limits from both sides are equal, so
$\therefore \lim\limits_{x \to 1}\frac{2-x}{(x-1)^2}=\infty$