Answer
$\lim\limits_{x \to 0^+}(\frac{1}{x}-ln~x) = \infty$
Work Step by Step
$\lim\limits_{x \to 0^+}(\frac{1}{x}-ln~x)$
When $x$ is close to 0 from the right side, $x$ is a very small positive number.
Then $~ln~x~$ approaches $-\infty$
The value of $\frac{1}{x}$ approaches $\infty$
Then, the value of $(\frac{1}{x}-ln~x)$ approaches $\infty$