Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.1 - Sequences - 11.1 Exercises - Page 705: 79

Answer

$2$

Work Step by Step

$a_{n} =$ {$\sqrt 2, \sqrt (2\sqrt 2), \sqrt (2\sqrt (2(\sqrt 2)),...$} $=$ {$2^{\frac{1}{2}}, 2^{\frac{1}{2}} \times 2^{\frac{1}{4}}, 2^{\frac{1}{2}} \times 2^{\frac{1}{4}} \times 2^{\frac{1}{8}}, ...$} $=$ {$2^{\frac{1}{2}}, 2^{\frac{3}{4}}, 2^{\frac{7}{8}}, ...$} $a_{n} = 2^{\frac{(2^{n}-1)}{2^{n}}}$ Taking limit as $nā†’ \infty$ $\lim\limits_{n \to \infty}a_{n} = \lim\limits_{n \to \infty} 2^{\frac{(2^{n}-1)}{2^{n}}}$ $= 2^{\lim\limits_{n \to \infty}\frac{(2^{n}-1)}{2^{n}}}$ $\lim\limits_{n \to \infty}\frac{2^{n}-1}{2^{n}}= \lim\limits_{n \to \infty}\frac{1-\frac{1}{2^{n}}}{1}$ $=\frac{1-0}{1}=1$ $\lim\limits_{n \to \infty}a_{n} = 2^{1}$ $\lim\limits_{n \to \infty}a_{n} = 2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.