Answer
a)
$I_{1}=0$
$I_{2}=0.25$
$I_{3}=0.75$
$I_{4}=1.50$
$I_{5}=2.50$
$I_{6}=3.76$
b) $I_{24}=70.28$
Work Step by Step
a)
$I_{n}=100(\frac{(1.0025)^{n}-1}{0.0025}-n)$
$I_{1}=100(\frac{(1.0025)^{1}-1}{0.0025}-1)=0$
$I_{2}=100(\frac{(1.0025)^{2}-1}{0.0025}-2)=0.25$
$I_{3}=100(\frac{(1.0025)^{3}-1}{0.0025}-3)=0.75$
$I_{4}=100(\frac{(1.0025)^{4}-1}{0.0025}-4)=1.50$
$I_{5}=100(\frac{(1.0025)^{5}-1}{0.0025}-5)=2.50$
$I_{6}=100(\frac{(1.0025)^{6}-1}{0.0025}-6)=3.76$
b) After 2 years $n=24$ $I_{24}=100(\frac{(1.0025)^{24}-1}{0.0025}-24)=70.28$