Answer
Converges to 5.
Work Step by Step
$a_{n}=\sqrt[n] (3^{n}+5^{n})$
$\lim\limits_{n \to \infty} \sqrt[n] (3^{n}+5^{n})$
$=\lim\limits_{n \to \infty} (3^{n}+5^{n})^{\frac{1}{n}}$
$=\lim\limits_{n \to \infty} (5^{n})^{\frac{1}{n}}((\frac{3}{5})^{n}+1)^{\frac{1}{n}}$
$=\lim\limits_{n \to \infty} 5((\frac{3}{5})^{n}+1)^{\frac{1}{n}}$
$=5\lim\limits_{n \to \infty} ((\frac{3}{5})^{n}+1)^{\frac{1}{n}}$
As $nā\infty$, $(\frac{3}{5})^{n}ā0$
Thus
$=5\lim\limits_{n \to \infty} ((\frac{3}{5})^{n}+1)^{\frac{1}{n}}=5(0+1)^{0}$
$=5(1)$
$=5$
Therefore,
$\lim\limits_{n \to \infty} \sqrt[n] (3^{n}+5^{n})=5$
The sequence converges to 5