Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.1 - Sequences - 11.1 Exercises - Page 705: 60

Answer

Converges to 5.

Work Step by Step

$a_{n}=\sqrt[n] (3^{n}+5^{n})$ $\lim\limits_{n \to \infty} \sqrt[n] (3^{n}+5^{n})$ $=\lim\limits_{n \to \infty} (3^{n}+5^{n})^{\frac{1}{n}}$ $=\lim\limits_{n \to \infty} (5^{n})^{\frac{1}{n}}((\frac{3}{5})^{n}+1)^{\frac{1}{n}}$ $=\lim\limits_{n \to \infty} 5((\frac{3}{5})^{n}+1)^{\frac{1}{n}}$ $=5\lim\limits_{n \to \infty} ((\frac{3}{5})^{n}+1)^{\frac{1}{n}}$ As $nā†’\infty$, $(\frac{3}{5})^{n}ā†’0$ Thus $=5\lim\limits_{n \to \infty} ((\frac{3}{5})^{n}+1)^{\frac{1}{n}}=5(0+1)^{0}$ $=5(1)$ $=5$ Therefore, $\lim\limits_{n \to \infty} \sqrt[n] (3^{n}+5^{n})=5$ The sequence converges to 5
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.