Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 11 - Section 11.1 - Sequences - 11.1 Exercises - Page 704: 47

Answer

Converges to $e^{2}$

Work Step by Step

Given: $a_n=(1+\frac{2}{n})^{n}$ f(n)=$a_n$ let f(x)=$(1+\frac{2}{x})^{x}$ $\lim\limits_{n \to \infty}f(x)=\lim\limits_{x \to \infty}(1+\frac{2}{x})^{x}$ $\lim\limits_{n \to \infty}ln|f(x)|=\lim\limits_{x \to \infty}xln(1+\frac{2}{x})$ $\lim\limits_{n \to \infty}ln|f(x)|=\lim\limits_{x \to \infty}\frac{ln(1+\frac{2}{x})}{(\frac{1}{x})}$ Apply L'Hopital's rule $\lim\limits_{n \to \infty}ln|f(x)|=\lim\limits_{x \to \infty}\frac{\frac{-2}{{x}^{2}}}{\frac{-1}{{x}^{2}}(1+\frac{2}{x})}$ $\lim\limits_{n \to \infty}ln|f(x)|=\lim\limits_{x \to \infty}\frac{2}{(1+\frac{2}{x})}$ $\lim\limits_{n \to \infty}ln|f(x)|=2$ Therefore $\lim\limits_{n \to \infty}f(x)={e}^{2}$ Therefore $\lim\limits_{n \to \infty}{(1+{\frac{2}{n})}^{n}}={e}^{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.