Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 10 - Section 10.3 - Polar Coordinates - 10.3 Exercises - Page 666: 14

Answer

The distance between the two points is $~~\sqrt{r_2^2+r_1^2-2r_1~r_2~cos~(\theta_1~-\theta_2)}$

Work Step by Step

We can find the Cartesian coordinates of the first point: $x_1 = r_1~cos~\theta_1$ $y_1 = r_1~sin~\theta_1$ We can find the Cartesian coordinates of the second point: $x_2 = r_2~cos~\theta_2$ $y_2 = r_2~sin~\theta_2$ We can find the distance between the two points: $d = \sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$ $d = \sqrt{(r_2~cos~\theta_2-r_1~cos~\theta_1)^2+(r_2~sin~\theta_2-r_1~sin~\theta_1)^2}$ $d = \sqrt{(r_2^2~cos^2~\theta_2-2r_1~r_2~cos~\theta_1~cos~\theta_2+r_1^2~cos^2~\theta_1)+(r_2^2~sin^2~\theta_2-2r_1~r_2~sin~\theta_1~sin~\theta_2+r_1^2~sin^2~\theta_1)}$ $d = \sqrt{(r_2^2~cos^2~\theta_2+r_2^2~sin^2~\theta_2)+(r_1^2~cos^2~\theta_2+r_1^2~sin^2~\theta_1)-2r_1~r_2~(cos~\theta_1~cos~\theta_2+~sin~\theta_1~sin~\theta_2)}$ $d = \sqrt{r_2^2+r_1^2-2r_1~r_2~cos~(\theta_1~-\theta_2)}$ The distance between the two points is $~~\sqrt{r_2^2+r_1^2-2r_1~r_2~cos~(\theta_1~-\theta_2)}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.