Answer
(a) We can see the point $(1,\frac{\pi}{4})$ on the graph.
Two other pairs of polar coordinates are $(1, \frac{9\pi}{4})$ and $(-1, \frac{5\pi}{4})$
(b) We can see the point $(-2,\frac{3\pi}{2})$ on the graph.
Two other pairs of polar coordinates are $(2, \frac{\pi}{2})$ and $(-2, \frac{7\pi}{2})$
(c) We can see the point $(3,-\frac{\pi}{3})$ on the graph.
Two other pairs of polar coordinates are $(3, \frac{5\pi}{3})$ and $(-3, \frac{2\pi}{3})$
Work Step by Step
(a) We can see the point $(1,\frac{\pi}{4})$ on the graph.
We can find two other pairs of polar coordinates:
$(1, \frac{\pi}{4}+2\pi) = (1, \frac{9\pi}{4})$
$(-1, \frac{\pi}{4}+\pi) = (-1, \frac{5\pi}{4})$
(b) We can see the point $(-2,\frac{3\pi}{2})$ on the graph.
We can find two other pairs of polar coordinates:
$(2, \frac{3\pi}{2}-\pi) = (2, \frac{\pi}{2})$
$(-2, \frac{3\pi}{2}+2\pi) = (-2, \frac{7\pi}{2})$
(c) We can see the point $(3,-\frac{\pi}{3})$ on the graph.
We can find two other pairs of polar coordinates:
$(3, -\frac{\pi}{3}+2\pi) = (3, \frac{5\pi}{3})$
$(-3, -\frac{\pi}{3}+\pi) = (-3, \frac{2\pi}{3})$