Answer
$sin (2~arcos~x)= 2x~\sqrt{1-x^2}$
Work Step by Step
Suppose that: $cos ~\theta = x$
Then: $\frac{adj}{hyp} = \frac{x}{1}$
Then: $opp = \sqrt{1-x^2}$
We can find $sin (2 ~arccos ~x)$:
$sin (2~arcos~x)$
$= sin (2~\theta)$
$= 2~sin (\theta)~cos(\theta)$
$= 2~\cdot \frac{opp}{hyp}~\cdot \frac{adj}{hyp}$
$= 2\cdot \frac{\sqrt{1-x^2}}{1}\cdot \frac{x}{1}$
$= 2x~\sqrt{1-x^2}$