Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 1 - Section 1.5 - Inverse Functions and Logarithms - 1.5 Exercises - Page 68: 62

Answer

a) $Q^{-1}=t=a\ln(\frac{Q_0}{Q_0-Q})$ The inverse is the amount of time taken to recharge the capacitor to a certain amount Q. b) $t=2\ln10$ seconds

Work Step by Step

a) $1-e^{-\frac{t}{a}}=\frac{Q}{Q_0}$ $e^{-\frac{t}{a}}=1-\frac{Q}{Q_0}=\frac{Q_0-Q}{Q_0}$ $-\frac{t}{a}=\ln(\frac{Q_0-Q}{Q_0})$ $Q^{-1}=t=-a\ln(\frac{Q_0-Q}{Q_0})=a\ln(\frac{Q_0}{Q_0-Q})$. The inverse is the amount of time taken to recharge the capacitor to a certain amount Q. b) let $Q=0.9Q_0$ $t=2\ln(\frac{Q_0}{Q_0-0.9Q_0})=2\ln(\frac{Q_0}{0.1Q_0})=2\ln10$ seconds
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.