Answer
let $\sin^{-1}x=\theta, -\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2}$
$\sin\theta=x$
$\because \sin^2\theta+\cos^2\theta=1$
$\therefore \cos(\sin^{-1}x)=\cos\theta=\pm\sqrt{1-\sin^2\theta}=\pm\sqrt{1-x^2}$
Since $\cos\theta\geq0$ for $-\frac{\pi}{2}\leq\theta\leq\frac{\pi}{2} , $
$\therefore \cos(\sin^{-1}x)=\sqrt{1-x^2}$
Work Step by Step
$\cos(\sin^{-1}x)=\sqrt{1-x^2}$ is proven above.