Answer
$y=\ln\frac{1+x}{1-x}$
Work Step by Step
$y=\frac{1-e^{-x}}{1+e^{-x}}$
$y(1+e^{-x})=1-e^{-x}$
$y+ye^{-x}=1-e^{-x}$
$ye^{-x}+e^{-x}=1-y$
$e^{-x}(y+1)=1-y$
$e^{-x}=\frac{1-y}{1+y}$
$-x=\ln\frac{1-y}{1+y}$
$x=-\ln\frac{1-y}{1+y}=\ln(\frac{1-y}{1+y})^{-1}=\ln\frac{1+y}{1-y}$
$y\rightleftharpoons x$
$f^{-1}(x)=y=\ln\frac{1+x}{1-x}$